

1.4401 (X5CrNiMo17-12-2) solution- annealed and quenched

1.4401 (X5CrNiMo17-12-2) directly from stock & cut to your required dimensions!

International term: AISI 316 / SS2347

AFNOR Z7CND17-11-02 / Z7CND17-12-02

Application field:

1.4401 is an austenitic stainless chromium-nickel-molybdenum steel Due to the addition of 2 to 2.5% molybdenum the corrosion resistance from 1.4401 compared to standard austenitic grades 1.4301 and 1.4307 is much better.

1.4401 is well suited for machining! Due to the molybdenum content 1.4401 has a good resistance in chloride-containing media and non-oxidizing acids. But 1.4401* in welded condition is not resistant to

intergranular corrosion! Best corrosion resistance is achieved with

polished surface.

It is mainly used in the chemical industry, food industry, petroleum $% \left(1\right) =\left(1\right) \left(1\right$

industry, petrochemical industry, engineering, for decorative

applications and kitchen utensils.

Characteristics: Weldability: medium*

Machinability: 6 (1 = bad - 10 = good)

Polishing: yes

Corrosion class: 4 (0 = weak - 5 = good)

Chemical composition:

1.4401 X2CrNiMo17-12- 2	С	Si	Mn	Р	S	Cr	Мо	Ni	V
min.						16,5	2,2	10,0	
max.	0,07	1,0	2,0	0,045	0,015	18,5	2,5	13,0	

1.4401 X2CrNiMo17-12-2	Al	Cu	N	Nb	Ti	Sonstiges
min.						
max.			0,11			

From stock:

Plates, rolled Flat, forged

Benefit of sawn cuts:

The processing with the saw is a mechanical processing of the material, which results in a significantly lower unintended deformation and increased hardness for the existing structure, such as the thermal cutting.

Thus, the machined workpiece has a homogeneous structure even at the edge, which does not change in the continuation of the material. This circumstance allows immediate finishing of the workpiece with milling or drilling . So it is not necessary to anneal the material or make a similar operation beforehand.